報(bào) 告 人:鄧科財(cái) 副教授
報(bào)告題目:On antimagic labeling of bipartite graphs
報(bào)告時間:2025年4月16日(周三)上午10:00
報(bào)告地點(diǎn):騰訊會議 147-707-080
主辦單位:數(shù)學(xué)與統(tǒng)計(jì)學(xué)院、數(shù)學(xué)研究院、科學(xué)技術(shù)研究院
報(bào)告人簡介:
鄧科財(cái),畢業(yè)于廈門大學(xué)數(shù)學(xué)科學(xué)學(xué)院,師從錢建國教授和張福基教授。目前就職于華僑大學(xué)數(shù)學(xué)科學(xué)學(xué)院,副教授,碩士生導(dǎo)師。主要研究圖的染色、極值圖論等,發(fā)表學(xué)術(shù)論文20余篇,主持國家自然科學(xué)基金青年項(xiàng)目1項(xiàng),福建省自然科學(xué)基金一項(xiàng),擔(dān)任福建省運(yùn)籌學(xué)會理事。
報(bào)告摘要:
An antimagic labeling of a graph $G$ of size $m$ is a one-to-one mapping $f: E_G\rightarrow\{1,2,\ldots,m\}$, ensuring that the vertex sums in $V_G$ are pairwise distinct, where a vertex sum of a vertex $v$ in $V_G$ is defined as the sum of the labels of the edges incident to $v$. A graphis called antimagic if it admits an antimagic labeling. The Antimagic Conjecture, proposed by Hartsfield and Ringel in 1990, posits that every connected graph other than $K_2$ is antimagic. We shows that every bipartite graph with minimum degree at least 15 is antimagic. Our approach primarily utilizes a consequence of K\{o}nig's Theorem, the existence of a subgraph of certain size without Eulerian component, and a labeling lemma that allows certain vertex sums to be divisible by 3, while others are not.